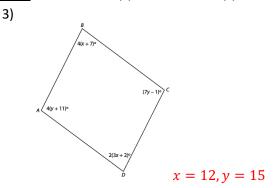
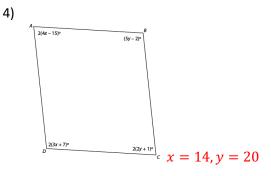
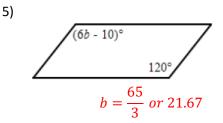

Name:

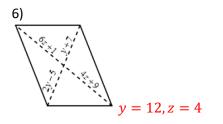
SM2 9.1: Prove Parallelogram Theorems

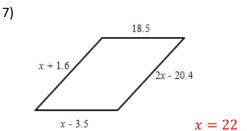
Problems: Use the figure below for problems 1–2.

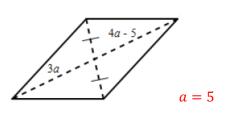

1) Identify the pairs of angles that fit each category.

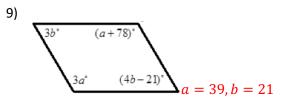

Linear Pairs		Vertical Angles		Corresponding Angles	
$\angle 1$ and $\angle 2$	∠5 and ∠6	$\angle 1$ and $\angle 4$		$\angle 1$ and $\angle 5$	
$\angle 2$ and $\angle 4$	∠6 and ∠8	$\angle 2$ and $\angle 3$		$\angle 2$ and $\angle 6$	
$\angle 4$ and $\angle 3$	∠8 and ∠7	∠5 and ∠8		∠3 and ∠7	
$\angle 3$ and $\angle 1$	∠7 and ∠5	∠6 and ∠7		$\angle 4$ and $\angle 8$	
Alternate Interior Angles		Alternate Exterior Angles		Same Side Interior	
∠3 and ∠6	$\angle 4$ and $\angle 5$	$\angle 1$ and $\angle 8$	∠2 and ∠7	∠3 and ∠5	$\angle 4$ and $\angle 6$

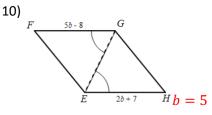

2) Given $m \angle 1 = 72^\circ$, find the measure of the remaining angles


 $m \angle 2 = 180^{\circ} - 72^{\circ} = 108^{\circ} \qquad m \angle 3 = m \angle 2 = 108^{\circ} \qquad m \angle 4 = m \angle 1 = 72^{\circ} \qquad m \angle 5 = m \angle 1 = 72^{\circ}$ $m \angle 6 = m \angle 3 = m \angle 2 = 108^{\circ} \qquad m \angle 7 = m \angle 2 = 108^{\circ} \qquad m \angle 8 = m \angle 1 = 72^{\circ}$


Problems: Find the value(s) of the variable(s) in each parallelogram.





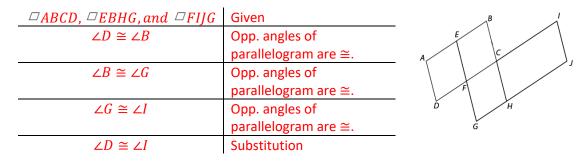



8)

QRST is a rectangle. Find the value of *x* and the length of each diagonal.

11) QS = x and RT = 2x - 4x = 4 QS = RT = 4

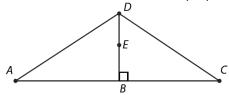
12) QS = 7x - 2 and RT = 4x + 3 $x = \frac{5}{3}$ $QS = RT = \frac{29}{3}$


13)
$$QS = 5x - 8$$
 and $RT = 2x + 1$
 $x = 3$ $QS = RT = 7$

Construct a proof for the following problems.

14) If a parallelogram is a rectangle, then its diagonals are congruent.

A	ABCD is a rectangle.	Given
	$\overline{AD} \cong \overline{BC}$, and $\overline{AB} \cong \overline{DC}$	Opp. Sides of a parallelogram are ≅.
	$m \angle A = m \angle B = m \angle C = m \angle D$ $= 90^{\circ}$	Definition of a rectangle
	$\Delta ABD \cong \Delta CDB \cong \Delta DCA \cong \Delta BAC$	SAS Triangle Congruence
5	$\overline{AC} \cong \overline{BD}$	СРСТС


15) Given that $\Box ABCD$, $\Box EBHG$, and $\Box FIJG$ are parallelograms, prove that $\angle D \cong \angle I$

16) Given that $\Box ABCD$ is a parallelogram, prove that $\triangle DPA \cong \triangle BPC$

A B	□ ABCD is a parallelogram	Given
	$\overline{AD} \cong \overline{BC}$	Opp. sides of a
		parallelogram are ≅.
	$\overline{DP} \cong \overline{PB} \text{ and } \overline{AP} \cong \overline{PC}$	Diagonals of a
		parallelogram bisect each
D		other.
	$\Delta DPA \cong \Delta BPC$	SSS Triangle Congruence

17) Prove that a point on a perpendicular bisector is equidistant from the endpoints of the segment it bisects given that in $\triangle ACD$, \overline{BD} is the perpendicular bisector of \overline{AC} and point *E* is on \overline{BD} . Write your answer in a proof.

Given: \overline{DB} is the perpendicular bisector of \overline{AC} . E is a point on \overline{DB} .

Prove:

EA = EC

\overline{DB} is the perpendicular bisector of \overline{AC} .	Given	
Draw segment \overline{EA} and \overline{EC}		
AB = BC	Definition of a Bisector	
EB = EB	Reflexive Property	
$m \angle EBA = 90^\circ = m \angle EBC$	Definition of Perpendicular	
$\Delta EBA \cong \Delta EBC$	SAS Triangle Congruence	
EA = EC	СРСТС	